Nanomaterials (Sep 2023)

Unraveling the Position Effect of Spiroxanthene-Based n-Type Hosts for High-Performance TADF–OLEDs

  • Qinglin Liu,
  • Yun Deng,
  • Baoyi Ren,
  • Xia Lan,
  • Yuehong Zhang,
  • Runda Guo,
  • Chensheng Li,
  • Gang Xiong,
  • Yaguang Sun,
  • Zujin Zhao

DOI
https://doi.org/10.3390/nano13182517
Journal volume & issue
Vol. 13, no. 18
p. 2517

Abstract

Read online

For developing high-performance organic light-emitting diodes (OLEDs) with thermally activated delayed fluorescent (TADF) emitters, the diphenyltriazine (TRZ) unit was introduced onto the 2′- and 3′-positions of xanthene moiety of spiro[fluorene-9,9′-xanthene] (SFX) to construct n-type host molecules, namely 2′-TRZSFX and 3′-TRZSFX. The outward extension of the TRZ unit, induced by the meta-linkage, resulted in a higher planarity between the TRZ unit and xanthene moiety in the corresponding 3′-TRZSFX. Additionally, this extension led to a perched T1 level, as well as a lower unoccupied molecular orbital (LUMO) level when compared with 2′-TRZSFX. Meanwhile, the 3′-TRZSFX molecules in the crystalline state presented coherent packing along with the interaction between TRZ units; the similar packing motif was spaced apart from xanthene moieties in the 2′-TRZSFX crystal. These endowed 3′-TRZSFX superior electron transport capacity in single-carrier devices relative to the 2′-TRZSFX-based device. Hence, the 3′-TRZSFX-based TADF–OLED showed remarkable electroluminescent (EL) performance under the operating luminance from turn-on to ca. 1000 cd·m−2 with a maximum external quantum efficiency (EQEmax) of 23.0%, thanks to its matched LUMO level with 4CzIPN emitter and better electron transport capacity. Interestingly, the 2′-TRZSFX-based device, with an EQEmax of 18.8%, possessed relatively low roll-off and higher efficiency when the operating luminance exceeded 1000 cd·m−2, which was attributed to the more balanced carrier transport under high operating voltage. These results were elucidated by the analysis of single-crystal structures and the measurements of single-carrier devices, combined with EL performance. The revealed position effect of the TRZ unit on xanthene moiety provides a more informed strategy to develop SFX-based hosts for highly efficient TADF–OLEDs.

Keywords