Neurotrauma Reports (Apr 2022)

Effect of T3 Spinal Contusion Injury on Upper Urinary Tract Function

  • Jason H. Gumbel,
  • Charles H. Hubscher

DOI
https://doi.org/10.1089/NEUR.2022.0014
Journal volume & issue
Vol. 3, no. 1
pp. 190 – 198

Abstract

Read online

Spinal cord injury (SCI) significantly impacts many systems attributable to disrupted autonomic regulation of the body. Of these disruptions, excessive production/passage of urine (polyuria) has been understudied. Pre-clinical animal studies investigating SCI-induced polyuria have been carried out in T8?T10 spinal-level contusive injuries, which directly impacts both supraspinal sympathetic inputs to the spinal circuitry mediating kidney function as well as local networks including pre-ganglionic sympathetic fibers to the kidney. The current study utilizes a higher-level (T3) contusion to narrow the potential source(s) of damage that induce(s) polyuria. Metabolic cage 24-h urine collections demonstrated that, starting 1 week post-SCI and lasting chronically through 6 weeks post-SCI, T3 contused adult male rats had a significant increase in void volume relative to pre-injury and surgical sham controls. Subsequent examination of previously identified biomarkers revealed levels reflecting the presence of polyuria. For example, urine atrial natriuretic peptide levels were significantly increased at 6 weeks post-SCI compared to baseline, and serum arginine vasopressin (AVP) levels were significantly decreased. Further, there was a significant decrease post-injury relative to shams in the number of AVP-labeled cells within the suprachiasmatic nucleus, a hypothalamic region responsible for significant disruptions of circadian rhythmicity post-SCI, including loss of the diurnal variation of AVP production, which clinical studies have identified as contributing to the emergence of nocturia after SCI. Together, the current results demonstrate that SCI-induced polyuria is present after a T3-level SCI, indicating that damage of descending supraspinal circuitries precipitates dysfunction of homeostatic mechanisms involved in salt and water balance.

Keywords