Materials (Aug 2019)

Bitumen Recovery from Crude Bitumen Samples from Halfaya Oilfield by Single and Composite Solvents—Process, Parameters, and Mechanism

  • Yunfeng Liu,
  • Zhengsong Qiu,
  • Hanyi Zhong,
  • Zhen Nie,
  • Jia Li,
  • Weian Huang,
  • Xin Zhao

DOI
https://doi.org/10.3390/ma12172656
Journal volume & issue
Vol. 12, no. 17
p. 2656

Abstract

Read online

Since 2007, heterogeneous, high-viscosity active bituminous formations have often occurred during the drilling process in Yadavaran oilfield (Iran), Halfaya oilfield (Iraq), and tar sands (Canada). The formation of bitumen exhibits plastic and creep properties, and its adhesion is strong, so drilling accidents are easily caused, such as adhering vibrating screen, drill pipe sticking, lost circulation, and even well abandonment. These complex problems cause huge economic losses. Solvents used to dissolve bitumen are a feasible technology to remove bitumen effectively. In order to solve this problem, we used crude bitumen samples from Halfaya oilfield to study the relation between the bitumen component and different solvents. In this study, the temperature, crude bitumen sample to solvent ratio, stirring rate, stirring time, and ultrasound time on bitumen recovery by toluene were investigated by a single factor experiment. The optimum process parameter for bitumen recovery was obtained. Toluene, n-heptane, tetrahydrofuran, cyclohexane, cyclopentane, ethyl acetate, and n-pentane were chosen as the solvents for single solvent extraction and composite solvent extraction. The bitumen recovery increased significantly with the use of a composite solvent compared to a single solvent. The composite solvent ratio was 1:1. The highest bitumen recovery was 98.9 wt% by toluene/cyclohexane composite solvent. The SARA (saturates, aromatics, resins, and asphaltenes) components of the bitumen were analyzed. The toluene showed the highest asphaltene content, while the n-alkanes showed the lowest asphaltene content. The higher the asphaltene content, the higher the bitumen recovery. The composite solvent obtained the highest asphaltene content and bitumen recovery. The viscosity of bitumen extraction by different solvents was measured. The lower the bitumen viscosity, the higher the bitumen recovery. The element analysis indicated the solvent’s ability to extract bitumen colloids with the C/H ratio. This study provides a reliable theoretical basis for the subsequent adoption of effective anti-bitumen polluted drilling fluid additives.

Keywords