Energies (Nov 2021)

Efficiency Comparison between Two Masonry Wall Drying Devices Using In Situ Data Measurements

  • Piotr Łapka,
  • Łukasz Cieślikiewicz

DOI
https://doi.org/10.3390/en14217137
Journal volume & issue
Vol. 14, no. 21
p. 7137

Abstract

Read online

In this paper, an in situ investigation and comparison of energy consumption and efficiency of two devices for implementation of the thermo-injection masonry wall drying method are presented. The following drying devices were considered: the currently used device (CUD) and the novel prototype device (NPD) with optimized control of the operating parameters. The historic building subjected to the drying and renovation was located in the city of Łowicz (Poland). The temperature and relative humidity of the air in several points in the basement and the temperature and moisture content at various locations in the considered masonry wall segments, as well as the electrical parameters for both devices, were measured in the real time and registered by applying a dedicated data acquisition system. The specific energy consumption during drying, defined as the energy consumption divided by the length of the drying wall section and by the mean volumetric moisture content change in the wall, was equal to 16.58 and 10.44 kWh/m/moisture content vol.% for the CUD and NPD, respectively. Moreover, the moisture content in the wall decreased by an average of 2.13 and 3.22 vol.% for the CUD and NPD, respectively, while the temperature of the wall surface in the drying zone was increased to approximately 35–40 °C and 40–65 °C for the CUD and NPD, respectively. The obtained results showed that the NPD was much more efficient than the CUD and that the building renovation process may be more environmentally friendly by applying more efficient drying devices and strategies.

Keywords