Sensors (Oct 2024)

Internet of Things Long-Range-Wide-Area-Network-Based Wireless Sensors Network for Underground Mine Monitoring: Planning an Efficient, Safe, and Sustainable Labor Environment

  • Carlos Cacciuttolo,
  • Edison Atencio,
  • Seyedmilad Komarizadehasl,
  • Jose Antonio Lozano-Galant

DOI
https://doi.org/10.3390/s24216971
Journal volume & issue
Vol. 24, no. 21
p. 6971

Abstract

Read online

Underground mines are considered one of the riskiest facilities for human activities due to numerous accidents and geotechnical failures recorded worldwide over the last century, which have resulted in unsafe labor conditions, poor health outcomes, injuries, and fatalities. One significant cause of these accidents is the inadequate or nonexistent capacity for the real-time monitoring of safety conditions in underground mines. In this context, new emerging technologies linked to the Industry 4.0 paradigm, such as sensors, the Internet of Things (IoT), and LoRaWAN (Long Range Wide Area Network) wireless connectivity, are being implemented for planning the efficient, safe, and sustainable performance of underground mine labor environments. This paper studies the implementation of an ecosystem composed of IoT sensors and LoRa wireless connectivity in a data-acquisition system, which eliminates the need for expensive cabling and manual monitoring in mining operations. Laying cables in an underground mine necessitates cable support and protection against issues, such as machinery operations, vehicle movements, mine operator activities, and groundwater intrusion. As the underground mine expands, additional sensors typically require costly cable installations unless wireless connectivity is employed. The results of this review indicate that an IoT LoRaWAN-based wireless sensor network (WSN) provides real-time data under complex conditions, effectively transmitting data through physical barriers. This network presents an attractive low-cost solution with reliable, simple, scalable, secure, and competitive characteristics compared to cable installations and manually collected readings, which are more sporadic and prone to human error. Reliable data on the behavior of the underground mine enhances productivity by improving key performance indicators (KPIs), minimizing accident risks, and promoting sustainable environmental conditions for mine operators. Finally, the adoption of IoT sensors and LoRaWAN wireless connectivity technologies provides information of the underground mine in real-time, which supports better decisions by the mining industry managers, by ensuring compliance with safety regulations, improving the productive performance, and fostering a roadmap towards more environmentally friendly labor conditions.

Keywords