Polymers (Jul 2024)

Design of High-Performance Molecular Imprinted Magnetic Nanoparticles-Loaded Hydrogels for Adsorption and Photodegradation of Antibiotics from Wastewater

  • Giusy Curcuruto,
  • Andrea A. Scamporrino,
  • Roberta Puglisi,
  • Giuseppe Nicotra,
  • Gianfranco Sfuncia,
  • Giuliana Impellizzeri,
  • Sandro Dattilo,
  • Anne Kahru,
  • Mariliis Sihtmäe,
  • Villem Aruoja,
  • Irina Blinova,
  • Sabrina Carola Carroccio

DOI
https://doi.org/10.3390/polym16152096
Journal volume & issue
Vol. 16, no. 15
p. 2096

Abstract

Read online

A hydrogel formulation of 2-hydroxy ethyl methacrylate (HEMA) containing covalently linked magnetite nanoparticles was developed to actively facilitate the selective removal and photocatalytic degradation of antibiotics. To this purpose, the hybrid materials were molecularly imprinted with Lomefloxacin (Lome) or Ciprofloxacin (Cipro), achieving a selectivity of 60% and 45%, respectively, starting from a solution of XX concentration. After the adsorption, the embedded magnetite was used with the double function of (i) magnetically removing the material from water and (ii) triggering photo-Fenton (PF) reactions assisted by UVA light and H2O2 to oxidize the captured antibiotic. The success of the material design was confirmed by a comprehensive characterization of the system from chemical–physical and morphological perspectives. Adsorption and degradation tests demonstrated the material’s ability to efficiently degrade Lome until its complete disappearance from the electrospray ionization (ESI) mass spectra. Regeneration tests showed the possibility of reusing the material for up to three cycles. Ecotoxicological tests using algae Rapidocelis subcapitata, crustaceans Daphnia magna, and bacteria Vibrio fischeri were performed to evaluate the ecosafety of our synthesized materials.

Keywords