Geochemistry, Geophysics, Geosystems (Oct 2024)

Assessing the Precision and Accuracy of Foraminifera Elemental Analysis at Low Ratios

  • Wanyi Lu,
  • Weifu Guo,
  • Delia W. Oppo

DOI
https://doi.org/10.1029/2024GC011560
Journal volume & issue
Vol. 25, no. 10
pp. n/a – n/a

Abstract

Read online

Abstract The minor and trace element compositions of biogenic carbonates such as foraminifera are important tools in paleoceanography research. However, most studies have focused primarily on samples with element to calcium (El/Ca) ratios higher than the El/Ca range often found in benthic foraminifera. Here, we systematically assess the precision and accuracy of foraminifera elemental analysis across a wide range of El/Ca especially at relatively low ratios, using a method on a Thermo Scientific iCAP Qc quadrupole Inductively Coupled Plasma Mass Spectrometer (ICP‐MS). We focus on two benthic foraminifera species, Hoeglundina elegans and Cibicidoides pachyderma, and prepared a suite of solution standards based on their typical El/Ca ranges to correct for signal drift and matrix effects during ICP‐MS analysis and to determine analytical precision. We observe comparable precisions with published studies at high El/Ca, and higher relative standard deviations for each element at lower El/Ca, as expected from counting statistics. The overall long‐term analytical precision (2σ) of the H. elegans‐like consistency standard solutions was 6.5%, 4.6%, 5.0%, for Li/Ca, Mg/Ca, Mg/Li, and 6.4%, 10.0%, 4.2% for B/Ca, Cd/Ca, Sr/Ca. The precision for H. elegans‐like Mg/Li is equivalent to a temperature uncertainty of 0.5–1.1°C. Measurement precisions were also assessed based on three international standards (one solution and two powder standards) and replicate measurements of H. elegans and C. pachyderma samples. We provide file templates and program scripts that can be used to design calibration and consistency standards, prepare run sequences, and convert the raw ICP‐MS data into molar ratios.

Keywords