NiMoO4 is an excellent candidate for supercapacitor electrodes, but poor cycle life, low electrical conductivity, and small practical capacitance limit its further development. Therefore, in this paper, we fabricate NiMoO4@MnCo2O4 composites based on a two-step hydrothermal method. As a supercapacitor electrode, the sample can reach 3000 mF/cm2 at 1 mA/cm2. The asymmetric supercapacitor (ASC), NiMoO4@MnCo2O4//AC, can be constructed with activated carbon (AC) as the negative electrode, the device can reach a maximum energy density of 90.89 mWh/cm3 at a power density of 3726.7 mW/cm3 and the capacitance retention can achieve 78.4% after 10,000 cycles.