npj Precision Oncology (Aug 2017)

Network-based machine learning and graph theory algorithms for precision oncology

  • Wei Zhang,
  • Jeremy Chien,
  • Jeongsik Yong,
  • Rui Kuang

DOI
https://doi.org/10.1038/s41698-017-0029-7
Journal volume & issue
Vol. 1, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Network-based analytics plays an increasingly important role in precision oncology. Growing evidence in recent studies suggests that cancer can be better understood through mutated or dysregulated pathways or networks rather than individual mutations and that the efficacy of repositioned drugs can be inferred from disease modules in molecular networks. This article reviews network-based machine learning and graph theory algorithms for integrative analysis of personal genomic data and biomedical knowledge bases to identify tumor-specific molecular mechanisms, candidate targets and repositioned drugs for personalized treatment. The review focuses on the algorithmic design and mathematical formulation of these methods to facilitate applications and implementations of network-based analysis in the practice of precision oncology. We review the methods applied in three scenarios to integrate genomic data and network models in different analysis pipelines, and we examine three categories of network-based approaches for repositioning drugs in drug–disease–gene networks. In addition, we perform a comprehensive subnetwork/pathway analysis of mutations in 31 cancer genome projects in the Cancer Genome Atlas and present a detailed case study on ovarian cancer. Finally, we discuss interesting observations, potential pitfalls and future directions in network-based precision oncology.