Nanomaterials (Jan 2024)
Research on Fabrication of Phononic Crystal Soft-Supported Graphene Resonator
Abstract
In aviation, aerospace, and other fields, nanomechanical resonators could offer excellent sensing performance. Among these, graphene resonators, as a new sensitive unit, are expected to offer very high mass and force sensitivity due to their extremely thin thickness. However, at present, the quality factor of graphene resonators at room temperature is generally low, which limits the performance improvement and further application of graphene resonators. Enhancing the quality factor of graphene resonators has emerged as a pressing research concern. In a previous study, we have proposed a new mechanism to reduce the energy dissipation of graphene resonators by utilizing phononic crystal soft-supported structures. We verified its feasibility through theoretical analysis and simulations. This article focuses on the fabrication of a phononic crystal soft-supported graphene resonator. In order to address the issues of easy fracture, deformation, and low success rate in the fabrication of phononic crystal soft-supported graphene resonators, we have studied key processes for graphene suspension release and focused ion beam etching. Through parameter optimization, finally, we have obtained phononic crystal soft-supported graphene resonators with varying cycles and pore sizes. Finally, we designed an optical excitation and detection platform based on Fabry–Pérot interference principle and explored the impact of laser power and spot size on phononic crystal soft-supported graphene resonators.
Keywords