Environmental Sciences Proceedings (Nov 2023)

Estimation of Indoor Air Pollutants and Health Implications Due to Biomass Burning in Rural Household Kitchens in Jos, Plateau State, Nigeria

  • Ameh J. Adah,
  • Taaji Daniel,
  • Deborah U. Akpaso

DOI
https://doi.org/10.3390/ecas2023-16345
Journal volume & issue
Vol. 27, no. 1
p. 29

Abstract

Read online

Household air pollution was responsible for an estimated 3.2 million deaths per year in 2020, including over 237,000 deaths of children under the age of 5. A large number of these death cases was particularly recorded in developing countries where many people rely heavily on biomass for energy. Burning biomass emits carbon monoxide and other pollutants resulting in indoor air pollution, exacerbations of asthma, hospitalizations for heart attacks and respiratory illness, birth defects, neurological diseases, and even mortality, which are all brought on by indoor air pollution. Because women and children typically do most of the cooking, they are most affected by indoor air pollution. In this research, an active sampling technique was adopted in estimating the amount of three major criteria gaseous pollutants (CO, H2S, and SO2) in the air in rural household kitchens within the Jos metropolis. The Attair 5X gas detector was used. The power button was pressed and the equipment was allowed to initialize for few minutes while the readings were taken downwind in-situ at a distance of 1 m, 2 m, 3 m, 4 m, and 5 m respectively from the emission source at the expiration of one (1) minute for each distance to check the impact of emissions on the environment and people in such areas. The results obtained shows that CO, H2S, and SO2 were higher from firewood emission sources when compared with charcoal emission sources from the 14 different rural kitchens in the Bauchi ring road, Jos, Plateau State, Nigeria. Hence, this study serves as a ready reference for environmentalists to make target decisions on air pollution reduction.

Keywords