The Maastricht Acquisition Platform for Studying Mechanisms of Cell–Matrix Crosstalk (MAPEX): An Interdisciplinary and Systems Approach towards Understanding Thoracic Aortic Disease
Berta H. Ganizada,
Koen D. Reesink,
Shaiv Parikh,
Mitch J. F. G. Ramaekers,
Asim C. Akbulut,
Pepijn J. M. H. Saraber,
Gijs P. Debeij,
MUMC-TAA Student Team,
Armand M. Jaminon,
Ehsan Natour,
Roberto Lorusso,
Joachim E. Wildberger,
Barend Mees,
Geert Willem Schurink,
Michael J. Jacobs,
Jack Cleutjens,
Ingrid Krapels,
Alexander Gombert,
Jos G. Maessen,
Ryan Accord,
Tammo Delhaas,
Simon Schalla,
Leon J. Schurgers,
Elham Bidar
Affiliations
Berta H. Ganizada
Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Koen D. Reesink
Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Shaiv Parikh
Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Mitch J. F. G. Ramaekers
Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Asim C. Akbulut
Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Pepijn J. M. H. Saraber
Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Gijs P. Debeij
Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
MUMC-TAA Student Team
Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Armand M. Jaminon
Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Ehsan Natour
Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Roberto Lorusso
Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Joachim E. Wildberger
Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Barend Mees
Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Geert Willem Schurink
Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Michael J. Jacobs
Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Jack Cleutjens
Department of Pathology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Ingrid Krapels
Department of Clinical Genetics, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Alexander Gombert
Department of Vascular Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
Jos G. Maessen
Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Ryan Accord
Department of Cardiothoracic Surgery, Center for Congenital Heart Diseases, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
Tammo Delhaas
Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Simon Schalla
Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Leon J. Schurgers
Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Elham Bidar
Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
Current management guidelines for ascending thoracic aortic aneurysms (aTAA) recommend intervention once ascending or sinus diameter reaches 5–5.5 cm or shows a growth rate of >0.5 cm/year estimated from echo/CT/MRI. However, many aTAA dissections (aTAAD) occur in vessels with diameters below the surgical intervention threshold of <55 mm. Moreover, during aTAA repair surgeons observe and experience considerable variations in tissue strength, thickness, and stiffness that appear not fully explained by patient risk factors. To improve the understanding of aTAA pathophysiology, we established a multi-disciplinary research infrastructure: The Maastricht acquisition platform for studying mechanisms of tissue–cell crosstalk (MAPEX). The explicit scientific focus of the platform is on the dynamic interactions between vascular smooth muscle cells and extracellular matrix (i.e., cell–matrix crosstalk), which play an essential role in aortic wall mechanical homeostasis. Accordingly, we consider pathophysiological influences of wall shear stress, wall stress, and smooth muscle cell phenotypic diversity and modulation. Co-registrations of hemodynamics and deep phenotyping at the histological and cell biology level are key innovations of our platform and are critical for understanding aneurysm formation and dissection at a fundamental level. The MAPEX platform enables the interpretation of the data in a well-defined clinical context and therefore has real potential for narrowing existing knowledge gaps. A better understanding of aortic mechanical homeostasis and its derangement may ultimately improve diagnostic and prognostic possibilities to identify and treat symptomatic and asymptomatic patients with existing and developing aneurysms.