Nanomaterials (Jan 2024)

Enhanced Electrocatalytic Nitrate Reduction to Ammonia Using Functionalized Multi-Walled Carbon Nanotube-Supported Cobalt Catalyst

  • Minghao Ye,
  • Xiaoli Jiang,
  • Yagang Zhang,
  • Yang Liu,
  • Yanxia Liu,
  • Lin Zhao

DOI
https://doi.org/10.3390/nano14010102
Journal volume & issue
Vol. 14, no. 1
p. 102

Abstract

Read online

Ammonia (NH3) is vital in modern agriculture and industry as a potential energy carrier. The electrocatalytic reduction of nitrate (NO3−) to ammonia under ambient conditions offers a sustainable alternative to the energy-intensive Haber−Bosch process. However, achieving high selectivity in this conversion poses significant challenges due to the multi-step electron and proton transfer processes and the low proton adsorption capacity of transition metal electrocatalysts. Herein, we introduce a novel approach by employing functionalized multi-walled carbon nanotubes (MWCNTs) as carriers for active cobalt catalysts. The exceptional conductivity of MWCNTs significantly reduces charge transfer resistance. Their unique hollow structure increases the electrochemical active surface area of the electrocatalyst. Additionally, the one-dimensional hollow tube structure and graphite-like layers within MWCNTs enhance adsorption properties, thus mitigating the diffusion of intermediate and stabilizing active cobalt species during nitrate reduction reaction (NitRR). Using the MWCNT-supported cobalt catalyst, we achieved a notable NH3 yield rate of 4.03 mg h−1 cm−2 and a high Faradaic efficiency of 84.72% in 0.1 M KOH with 0.1 M NO3−. This study demonstrates the potential of MWCNTs as advanced carriers in constructing electrocatalysts for efficient nitrate reduction.

Keywords