Agronomy (Aug 2021)
Resistance to Fusarium Head Blight, Kernel Damage, and Concentrations of <i>Fusarium</i> Mycotoxins in the Grain of Winter Wheat Lines
Abstract
Fusarium head blight (FHB) can contaminate cereal grains with mycotoxins. Winter wheat can also become infected with FHB and is more resistant than durum wheat to head infection but less than other small-grain cereals. The aim of this study was to identify winter wheat lines that combine low levels of head infection and kernel damage with low levels of grain contamination with mycotoxins. Resistance of 27 winter wheat lines (four with resistance gene Fhb1) and cultivars to FHB was evaluated over a three-year (2017–2019) experiment established in two locations (Poznań and Radzików, Poland). At the anthesis stage, heads were inoculated with Fusarium culmorum isolates. The FHB index was scored, and the percentage of Fusarium-damaged kernels (FDKs) was assessed. The grain was analyzed for type B trichothecenes (deoxynivalenol and derivatives and nivalenol) and zearalenone content. The average FHB index of both locations was 12.9%. The proportion of FDK was 6.9% in weight and 8.5% in number. The average content of deoxynivalenol amounted to 3.543 mg/kg, and the average amount of nivalenol was 2.115 mg/kg. In total, we recorded 5.804 m/kg of type B trichothecenes. The zearalenone content in the grain was 0.214 mg/kg. Relationships between the FHB index, FDK, and mycotoxin contents were highly significant for wheat lines; however, these relationships were stronger for FDK than for FHB index. Breeding lines combining all types of FHB resistance were observed, five of which had resistance levels similar to those of wheat lines with the Fhb1 gene.
Keywords