Brain Sciences (Aug 2024)

The Neuroprotective and Anxiolytic Effects of Magnesium Sulfate on Retinal Dopaminergic Neurons in 6-OHDA-Induced Parkinsonian Rats: A Pilot Study

  • Leyi Huang,
  • Renxi Lin,
  • Chunying Zhang,
  • Shaoqing Zheng,
  • Yiyang Wang,
  • Zeyu Wu,
  • Sihao Chen,
  • Yihan Shen,
  • Guoheng Zhang,
  • Yuanlin Qi,
  • Ling Lin

DOI
https://doi.org/10.3390/brainsci14090861
Journal volume & issue
Vol. 14, no. 9
p. 861

Abstract

Read online

This study investigates the protective effects of magnesium sulfate on dopamine neurons in the retinas of rats with 6-hydroxydopamine (6-OHDA)-induced Parkinson’s disease (PD). Rapidly progressing cognitive decline often precedes or coincides with the motor symptoms associated with PD. PD patients also frequently exhibit visual function abnormalities. However, the specific mechanisms underlying visual dysfunction in PD patients are not yet fully understood. Therefore, this study aims to investigate whether magnesium homeostasis affects dopaminergic neurons in the retina of PD rats. Thirty-six rats were divided into four groups: (1) control, (2) control with magnesium sulfate (control/MgSO4), (3) Parkinson’s disease (PD), and (4) Parkinson’s disease with magnesium sulfate (PD/MgSO4). The apomorphine-induced (APO) rotation test assessed the success of the PD models. The open-field experiment measured the rats’ anxiety levels. Tyrosine hydroxylase (TH) and glutamate levels, indicators of dopamine neuron survival, were detected using immunofluorescence staining. Protein levels of solute carrier family 41 A1 (SCL41A1), magnesium transporter 1 (MagT1), and cyclin M2 (CNNM2) in the retina were analyzed using Western blot. Results showed that, compared to the PD group, rats in the PD/MgSO4 group had improved psychological states and motor performance at two and four weeks post-surgery. The PD/MgSO4 group also exhibited significantly higher TH fluorescence intensity in the left retinas and lower glutamate fluorescence intensity than the PD group. Additional experiments indicated that the protein levels of SLC41A1, MagT1, and CNNM2 were generally higher in the retinas of the PD/MgSO4 group, along with an increase in retinal magnesium ion content. This suggests that magnesium sulfate may reduce glutamate levels and protect dopamine neurons in the retina. Thus, magnesium sulfate might have therapeutic potential for visual functional impairments in PD patients.

Keywords