Animals (Feb 2021)

Activity-Integrated Hidden Markov Model to Predict Calving Time

  • Kosuke Sumi,
  • Swe Zar Maw,
  • Thi Thi Zin,
  • Pyke Tin,
  • Ikuo Kobayashi,
  • Yoichiro Horii

DOI
https://doi.org/10.3390/ani11020385
Journal volume & issue
Vol. 11, no. 2
p. 385

Abstract

Read online

Accurately predicting when calving will occur can provide great value in managing a dairy farm since it provides personnel with the ability to determine whether assistance is necessary. Not providing such assistance when necessary could prolong the calving process, negatively affecting the health of both mother cow and calf. Such prolongation could lead to multiple illnesses. Calving is one of the most critical situations for cows during the production cycle. A precise video-monitoring system for cows can provide early detection of difficulties or health problems, and facilitates timely and appropriate human intervention. In this paper, we propose an integrated approach for predicting when calving will occur by combining behavioral activities extracted from recorded video sequences with a Hidden Markov Model. Specifically, two sub-systems comprise our proposed system: (i) Behaviors extraction such as lying, standing, number of changing positions between lying down and standing up, and other significant activities, such as holding up the tail, and turning the head to the side; and, (ii) using an integrated Hidden Markov Model to predict when calving will occur. The experiments using our proposed system were conducted at a large dairy farm in Oita Prefecture in Japan. Experimental results show that the proposed method has promise in practical applications. In particular, we found that the high frequency of posture changes has played a central role in accurately predicting the time of calving.

Keywords