Scientific Reports (Jul 2022)
A digital alkali spin maser
Abstract
Abstract Self-oscillating atomic magnetometers, in which the precession of atomic spins in a magnetic field is driven by resonant modulation, offer high sensitivity and dynamic range. Phase-coherent feedback from the detected signal to the applied modulation creates a resonant spin maser system, highly responsive to changes in the background magnetic field. Here we show a system in which the phase condition for resonant precession is met by digital signal processing integrated into the maser feedback loop. This system uses a modest chip-scale laser and mass-produced dual-pass caesium vapour cell and operates in a 50 $$\mu $$ μ T field, making it a suitable technology for portable measurements of the geophysical magnetic field. We demonstrate a Cramér-Rao lower bound-limited resolution of 50 fT at 1 s sampling cadence, and a sensor bandwidth of 10 kHz. This device also represents an important class of atomic system in which low-latency digital processing forms an integral part of a coherently-driven quantum system.