Revista Vínculos (Jun 2019)

Normalización en desempeño de k-means sobre datos climáticos

  • Juan Sebastián Ramírez Gómez,
  • Néstor Dario Duque Méndez,
  • Jorge Julián Vélez Upegui

DOI
https://doi.org/10.14483/2322939X.15550
Journal volume & issue
Vol. 16, no. 1
pp. 57 – 72

Abstract

Read online

El análisis de clúster sobre datos climatológicos es usado en diversas investigaciones dado que permite obtener resultados interesantes para cada enfoque propuesto. Por tanto, en este trabajo se presenta la evaluación de desempeño del algoritmo de agrupamiento K-Means a partir del uso de normalización aplicada a un conjunto de datos con cuatro variables climatológicas (temperatura, precipitación, humedad relativa y radiación solar) para una estación ubicada en la ciudad de Manizales, Colombia. Esto con el fin de determinar el efecto de aplicar, o no, la normalización en la calidad de los clústeres y evaluar el costo computacional del algoritmo según las características establecidas. Para ello se definen seis escenarios de ejecución para 2, 3 y 5 clústeres con diferente cantidad y agrupación de variables utilizando distancia euclidiana como medida de alejamiento, Davies-Bouldin como método evaluación de calidad de los clústeres y la aplicación de normalización con Z-transformation y Range transformation. Se concluye que, a través de una comparación con k-medoides y aplicación STFT (Transformada de Fourier de Tiempo Reducido), la normalización mejora los resultados y con Z-transformation se obtienen los mejores desempeños de agrupamiento según el índice de Davis-Bouldin.

Keywords