Shock and Vibration (Jan 2020)
Nonlinear Vibration Analysis of Damaged Microplate considering Size Effect
Abstract
Since microplates are extensively used in MEMS devices such as microbumps, micromirrors, and microphones, this work aims to study nonlinear vibration of an electrically actuated microplate whose four edges are clamped. Based on the modified couple stress theory (MCST) and strain equivalent assumption, size effect and damage are taken into consideration in the present model. The dynamic governing partial differential equations of the microplate system were obtained using Hamilton’s principle and solved using the harmonic balance method after they are transformed into ordinary differential equation with regard to time. Size effect and damage effect on nonlinear free vibration of the microplate under DC voltage are discussed using frequency-response curve. In the forced vibration analysis, the frequency-response curves were also employed for the purpose of highlighting the influence of different physical parameters such as external excitation, damping coefficient, material length scale parameter, and damage variable when the system is under AC voltage. The results presented in this study may be helpful and useful for the dynamic stability of a electrically actuated microplate system.