Journal of Orthopaedic Surgery and Research (Nov 2024)

Correlation of metabolic markers and OPG gene mutations with bone mass abnormalities in postmenopausal women

  • Jun Li,
  • Zixin Li,
  • Siyuan Li,
  • Yunqiu Lu,
  • Ya Li,
  • Partab Rai

DOI
https://doi.org/10.1186/s13018-024-05162-4
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Objective The aim was to investigate the relationship between metabolic indices and abnormal bone mass (ABM), analyse the association between osteoprotegerin (OPG) gene mutations and ABM, and explore the interaction effect of type 2 diabetes mellitus (T2DM) and OPG gene mutations on bone mineral density (BMD) in postmenopausal women to provide a new supplementary index and a reliable basis for the early identification of osteoporosis (OP) in postmenopausal women in the clinical setting. Methods Postmenopausal women hospitalized within the Department of Endocrinology of the First Affiliated Sanatorium of Shihezi University from June 2021 to March 2023 were retrospectively analysed, and the bone mineral density of lumbar vertebrae 1–4 (BMD (L1-4)) of the studied subjects was measured once via twin-energy X-ray absorptiometry. The studied subjects were divided into a normal bone mass (NBM) group and an ABM group according to their bone mineral density, and the general data of the studied subjects were recorded once. Blood biochemical indices were determined, and genotyping of the rs4355801 locus of the OPG gene was performed. Differences in the overall data and biochemical indices of the two groups were evaluated via the rank-sum test, and the relationship between blood glucose levels and mutations of the rs4355801 locus of the OPG gene and ABM or BMD (L1-4) was evaluated via binary logistic regression analysis or linear regression analysis. A bootstrap test was performed to test whether uric acid (UA) levels mediate the association between blood glucose levels and BMD (L1-4). Simple effect analysis was performed to analyse the interaction between T2DM and mutations at the rs4355801 locus of the OPG gene on BMD (L1-4). Results ① After adjusting for confounding factors, the risk of ABM increased by 50% (95% CI 21–85%) for each unit increase in fasting plasma glucose (FPG) levels and 31% (95% CI 2–69%) for each unit increase in glycosylated haemoglobin (HbA1c) levels (both P < 0.05). FPG levels were negatively correlated with BMD (L1-4) (both P < 0.05), and uric acid in blood sugar and BMD (L1-4) played a significant mediating role in the model; this mediation accounted for 21% of the variance. ② After adjusting for confounding factors, women with the mutant genotypes GA and GG + GA of the OPG gene rs4355801 locus had a lower risk of ABM than did those with the wild-type genotype AA (OR = 0.71, 95% CI = 0.52–1.00; OR = 0.51, 95% CI = 0.28–0.92, P < 0.05). The mutant genotypes GG, GA and GG + GA were positively correlated with BMD (L1–4) (all P < 0.05). The interaction between T2DM and mutations in the OPG gene rs4355801 locus had an effect on BMD (L1-4), and this site mutation weakened the increase in blood glucose levels and led to an increase in the risk of ABM (P < 0.05). Conclusion Elevated blood glucose levels in postmenopausal women were associated with an increased risk of ABM, and UA played a mediating role in the relationship FPG levels and BMD (L1-4), accounting for 21% of the variance. Mutations at the rs4355801 locus of the OPG gene were associated with a reduced risk of ABM in postmenopausal women. The interaction between T2DM and mutations at the rs4355801 locus of the OPG gene in postmenopausal women affects BMD (L1-4), and mutations at this locus attenuate the increased risk of ABM due to elevated blood glucose levels.

Keywords