Applied Sciences (Jan 2019)
Analysis of Six Active Power Control Strategies of Interconnected Grids with VSC-HVDC
Abstract
In this paper, the generator angle stability of several active power control schemes of a voltage-source converter (VSC)-based high-voltage DC (HVDC) is evaluated for two interconnected AC systems. Excluding frequency control, there has been no detailed analysis of interconnected grids depending upon the converter power control, so six different types of active power control of the VSC-HVDC are defined and analyzed in this paper. For each TSO (transmission system operator), the applicable schemes of two kinds of step control and four kinds of ramp-rate control with a droop characteristic are included in this research. Furthermore, in order to effectively evaluate the angle stability, the Generators-VSC Interaction Factor (GVIF) index is newly implemented to distinguish the participating generators (PGs) group which reacts to the converter power change. As a result, the transient stabilities of the two power systems are evaluated and the suitable active power control strategies are determined for two TSOs. Simulation studies are performed using the PSS®E program to analyze the power system transient stability and various active power control schemes of the VSC-HVDC. The results provide useful information indicating that the ramp-rate control shows a more stable characteristic than the step-control for interconnected grids; thus, a converter having a certain ramp-rate slope similar to that of the other generator shows more stable results in several cases.
Keywords