Cell Death Discovery (May 2022)
Identifying a novel KLF2/lncRNA SNHG12/miR-494-3p/RAD23B axis in Spare Nerve Injury-induced neuropathic pain
Abstract
Abstract Spinal cord injury (SCI) is a devastating condition for patients, affecting nearly 2.5 million people globally. Multiple side effects of SCI have resulted in a terrible life experience for SCI patients, of which neuropathic pain has attracted the most scientific interest. Even though many efforts have been made to attenuate or eliminate neuropathic pain induced by SCI, the outcomes for patients are still poor. Therefore, identifying novel diagnosis or therapeutic targets of SCI-induced neuropathic pain is urgently needed. Recently, multiple functions of long non-coding RNA (lncRNA) have been elucidated, including those in SCI-induced neuropathic pain. In this study, lncRNA small nucleolar RNA host gene 12 (SNHG12) was found to be upregulated in the dorsal root ganglion (DRGs) of rats with spare nerve injury (SNI). By constructing SCI rat models, we found that lncRNA SNHG12 expression was increased in the DRGs, and mainly distributed in the cytoplasm of PC12 cells. Paw withdrawal threshold (PWT), paw withdrawal latency (PWL), and enzyme linked immunosorbent assay (ELISA) results indicated that lncRNA SNHG12 knockdown attenuated SNI-induced neuropathic pain, and decreased the expression levels of interleukin (IL)−1β, IL-6, and tumour necrosis factor α (TNF-α) in the DRGs. Bioinformatics analysis, RNA pull-down, chromatin immunoprecipitation (ChIP), and luciferase reporter gene assays showed that lncRNA SNHG12 regulates the RAD23 homologue B, nucleotide excision repair protein (RAD23B) expression, through targeting micro RNA (miR)−494-3p. Furthermore, the study indicated that Kruppel-Like Factor 2 (KLF2) could regulate lncRNA SNHG12 expression in PC12 cells. This study identified a novel KLF2/lncRNA SNHG12/miR-494-3p/RAD23B axis in SNI-induced neuropathic pain, which might provide a new insight for developing novel diagnosis, or therapeutic targets of SCI-induced neuropathic pain in the future.