Remote Sensing (Jan 2025)

Polarization Scattering Regions: A Useful Tool for Polarization Characteristic Description

  • Jiankai Huang,
  • Jiapeng Yin,
  • Zhiming Xu,
  • Yongzhen Li

DOI
https://doi.org/10.3390/rs17020306
Journal volume & issue
Vol. 17, no. 2
p. 306

Abstract

Read online

Polarimetric radar systems play a crucial role in enhancing microwave remote sensing and target identification by providing a refined understanding of electromagnetic scattering mechanisms. This study introduces the concept of polarization scattering regions as a novel tool for describing the polarization characteristics across three spectral regions: the polarization Rayleigh region, the polarization resonance region, and the polarization optical region. By using ellipsoidal models, we simulate and analyze scattering across varying electrical sizes, demonstrating how these sizes influence polarization characteristics. The research leverages Cameron decomposition to reveal the distinctive scattering behaviors within each region, illustrating that at higher-frequency bands, scattering approximates spherical symmetry, with minimal impact from the target shape. This classification provides a comprehensive view of polarization-based radar cross-section regions, expanding upon traditional single-polarization radar cross-section regions. The results show that polarization scattering regions are practical tools for interpreting polarimetric radar data across diverse frequency bands. The applications of this research in radar target recognition, weather radar calibration, and radar polarimetry are discussed, highlighting the importance of frequency selection for accurately capturing polarization scattering features. These findings have significant implications for advancing weather radar technology and target recognition techniques, particularly as radar systems move towards higher frequency bands.

Keywords