Journal of Integrative Bioinformatics (Jul 2023)

Discovering NDM-1 inhibitors using molecular substructure embeddings representations

  • Papastergiou Thomas,
  • Azé Jérôme,
  • Bringay Sandra,
  • Louet Maxime,
  • Poncelet Pascal,
  • Rosales-Hurtado Miyanou,
  • Vo-Hoang Yen,
  • Licznar-Fajardo Patricia,
  • Docquier Jean-Denis,
  • Gavara Laurent

DOI
https://doi.org/10.1515/jib-2022-0050
Journal volume & issue
Vol. 20, no. 2
pp. 629 – 55

Abstract

Read online

NDM-1 (New-Delhi-Metallo-β-lactamase-1) is an enzyme developed by bacteria that is implicated in bacteria resistance to almost all known antibiotics. In this study, we deliver a new, curated NDM-1 bioactivities database, along with a set of unifying rules for managing different activity properties and inconsistencies. We define the activity classification problem in terms of Multiple Instance Learning, employing embeddings corresponding to molecular substructures and present an ensemble ranking and classification framework, relaying on a k-fold Cross Validation method employing a per fold hyper-parameter optimization procedure, showing promising generalization ability. The MIL paradigm displayed an improvement up to 45.7 %, in terms of Balanced Accuracy, in comparison to the classical Machine Learning paradigm. Moreover, we investigate different compact molecular representations, based on atomic or bi-atomic substructures. Finally, we scanned the Drugbank for strongly active compounds and we present the top-15 ranked compounds.

Keywords