Energies (Dec 2023)

A Methodological Approach to the Simulation of a Ship’s Electric Power System

  • Igor P. Boychuk,
  • Anna V. Grinek,
  • Nikita V. Martyushev,
  • Roman V. Klyuev,
  • Boris V. Malozyomov,
  • Vadim S. Tynchenko,
  • Viktor A. Kukartsev,
  • Yadviga A. Tynchenko,
  • Sergey I. Kondratiev

DOI
https://doi.org/10.3390/en16248101
Journal volume & issue
Vol. 16, no. 24
p. 8101

Abstract

Read online

Modern ships are complex energy systems containing a large number of different elements. Each of these elements is simulated separately. Since all these models form a single system (ship), they are interdependent. The operating modes of some systems influence others, but at the same time, the work of all the systems should be aimed at fulfilling the basic functions of the ship. The work proposes a methodological approach to combining various systems of ships into a single complex model. This model allows combining models of ship systems of various levels (microlevel, macrolevel, metalevel, megalevel). The work provides examples of models of such multi-level energy systems. These are energy systems composed of an electric generator, a diesel engine, a propeller shaft, and algorithms used for operating the common parts of the ship’s electric power system and a piston wear process. Analytical, structural, numerical, and object-oriented models were made for these objects. Each of these particular models describes a limited class of problems, has characteristic properties, and a mathematical structure. The work shows how particular models can be interconnected using a set-theoretic description. Particular models are combined into macrolevel models, whose output parameters are quantities that are by no means related. The macrolevel models are interrelated using control models. Control models belong to the metalevel and allow for assigning settings and response thresholds to algorithms used in automation systems. Such a model (megalevel model) allows, ultimately, investigating the dynamics of the entire system as a whole and managing it.

Keywords