Plants (Jul 2024)
Enhancing Winter Wheat Soil–Plant Analysis Development Value Prediction through Evaluating Unmanned Aerial Vehicle Flight Altitudes, Predictor Variable Combinations, and Machine Learning Algorithms
Abstract
Monitoring winter wheat Soil–Plant Analysis Development (SPAD) values using Unmanned Aerial Vehicles (UAVs) is an effective and non-destructive method. However, predicting SPAD values during the booting stage is less accurate than other growth stages. Existing research on UAV-based SPAD value prediction has mainly focused on low-altitude flights of 10–30 m, neglecting the potential benefits of higher-altitude flights. The study evaluates predictions of winter wheat SPAD values during the booting stage using Vegetation Indices (VIs) from UAV images at five different altitudes (i.e., 20, 40, 60, 80, 100, and 120 m, respectively, using a DJI P4-Multispectral UAV as an example, with a resolution from 1.06 to 6.35 cm/pixel). Additionally, we compare the predictive performance using various predictor variables (VIs, Texture Indices (TIs), Discrete Wavelet Transform (DWT)) individually and in combination. Four machine learning algorithms (Ridge, Random Forest, Support Vector Regression, and Back Propagation Neural Network) are employed. The results demonstrate a comparable prediction performance between using UAV images at 120 m (with a resolution of 6.35 cm/pixel) and using the images at 20 m (with a resolution of 1.06 cm/pixel). This finding significantly improves the efficiency of UAV monitoring since flying UAVs at higher altitudes results in greater coverage, thus reducing the time needed for scouting when using the same heading overlap and side overlap rates. The overall trend in prediction accuracy is as follows: VIs + TIs + DWT > VIs + TIs > VIs + DWT > TIs + DWT > TIs > VIs > DWT. The VIs + TIs + DWT set obtains frequency information (DWT), compensating for the limitations of the VIs + TIs set. This study enhances the effectiveness of using UAVs in agricultural research and practices.
Keywords