Atmospheric Measurement Techniques (Dec 2018)

The importance of cylinder passivation for preparation and long-term stability of multicomponent monoterpene primary reference materials

  • N. D. C. Allen,
  • D. R. Worton,
  • P. J. Brewer,
  • C. Pascale,
  • B. Niederhauser

DOI
https://doi.org/10.5194/amt-11-6429-2018
Journal volume & issue
Vol. 11
pp. 6429 – 6438

Abstract

Read online

Monoterpenes play an important role in atmospheric chemistry due to their large anthropogenic and biogenic emission sources and high chemical reactivity. As a consequence, measurements are required to assess how changes in emissions of monoterpenes impact air quality. Accurate and comparable measurements of monoterpenes in indoor and outdoor environments require gaseous primary reference materials (PRMs) that are traceable to the international system of units (SI). PRMs of monoterpenes are challenging to produce due to the high chemical reactivity and low vapour pressures of monoterpenes and also their propensity to convert into other compounds, including other terpenes. In this paper, the long-term stability of gravimetrically prepared static monoterpene PRMs produced in differently passivated cylinders, including sampling canisters, was assessed. We demonstrate that static PRMs of multiple monoterpenes can be prepared and used as a suitable long-term standard. For the first time the effect of cylinder pressure and decanting from one cylinder to another on the chemical composition and amount fraction of monoterpenes was also studied. Gravimetrically prepared PRMs of limonene in high pressure cylinders were compared to a novel portable dynamic reference gas generator based on dilution of pure limonene vapour emitted from a permeation tube.