Materials (Jan 2022)

Prediction of Behaviour of Thin-Walled DED-Processed Structure: Experimental-Numerical Approach

  • Miroslav Urbánek,
  • Josef Hodek,
  • Daniel Melzer,
  • Martina Koukolíková,
  • Antonín Prantl,
  • Jaroslav Vavřík,
  • Michal Brázda,
  • Petr Martínek,
  • Sylwia Rzepa,
  • Jan Džugan

DOI
https://doi.org/10.3390/ma15030806
Journal volume & issue
Vol. 15, no. 3
p. 806

Abstract

Read online

Additive manufacturing (AM) becomes a more and more standard process in different fields of industry. There is still only limited knowledge of the relationship between measured material data and the overall behaviour of directed energy deposition (DED)-processed complex structures. The understanding of the structural performance, including flow curves and local damage properties of additively manufactured parts by DED, becomes increasingly important. DED can be used for creating functional surfaces, component repairing using multiple powder feeders, and creating a heterogeneous structure with defined chemical composition. For thin parts that are used with the as-deposited surface, this evaluation is even highly crucial. The main goal of the study was to predict the behaviour of thin-walled structures manufactured by the DED process under static loading by finite element analysis (FEA). Moreover, in this study, the mechanical performance of partly machined and fully machined miniaturized samples produced from the structure was compared. The structure studied in this research resembles a honeycomb shape made of austenitic stainless steel AISI 316L, which is characterized by high strength and ductility. The uncoupled damage models based on a hybrid experimental-numerical approach were used. The microstructure and hardness were examined to comprehend the structural behaviour.

Keywords