Materials (Jan 2024)

Insight into the Growth Mechanism of Low-Temperature Synthesis of High-Purity Lithium Slag-Based Zeolite A

  • Li Li,
  • Shicheng Xu,
  • Ze Liu,
  • Dongmin Wang

DOI
https://doi.org/10.3390/ma17030568
Journal volume & issue
Vol. 17, no. 3
p. 568

Abstract

Read online

The utilization of lithium slag (LS), a solid waste generated during the production of lithium carbonate, poses challenges due to its high sulfur content. This study presents a novel approach to enhancing the value of LS by employing alkali fusion and hydrothermal synthesis techniques to produce zeolite A at low temperatures. The synthesis of high-purity and crystalline lithium-slag-based zeolite A (LSZ) at 60 °C is reported for the first time in this research. The phase, morphology, particle size, and structure of LSZ were characterized by XRD, SEM, TEM, N2 adsorption, and UV Raman spectroscopy, respectively. High-purity and crystalline zeolite A was successfully obtained under hydrothermal conditions of 60 °C, an NaOH concentration of 2.0 mol/L, and a hydrothermal time of 8 h. The samples synthesized at 60 °C exhibited better controllability and almost no byproduct of sodalite occurred compared to zeolite A synthesized at room temperature or conventional temperature (approximately 90 °C). Additionally, the growth mechanism of LSZ was elucidated, challenging the traditional understanding of utilization of lithium and enabling the synthesis of various zeolites at lower temperatures.

Keywords