Axioms (Oct 2024)
Fredholm Determinant and Wronskian Representations of the Solutions to the Schrödinger Equation with a KdV-Potential
Abstract
From the finite gap solutions of the KdV equation expressed in terms of abelian functions we construct solutions to the Schrödinger equation with a KdV potential in terms of fourfold Fredholm determinants. For this we establish a connection between Riemann theta functions and Fredholm determinants and we obtain multi-parametric solutions to this equation. As a consequence, a double Wronskian representation of the solutions to this equation is constructed. We also give quasi-rational solutions to this Schrödinger equation with rational KdV potentials.
Keywords