Climate of the Past (Mar 2014)
Inorganic geochemistry data from Lake El'gygytgyn sediments: marine isotope stages 6–11
Abstract
Geochemical analyses were performed on sediments recovered by deep drilling at Lake El'gygytgyn in central Chukotka, northeastern Russia (67°30' N; 172°05' E). Major and rare element concentrations were determined using X-ray fluorescence spectroscopy (XRF) on the 2, Na2O, CaO, K2O, and Sr and are depleted in Al2O3, Fe2O3, TiO2, and MgO. An extreme SiO2 enrichment during MIS 11.3 and 9.3 was caused by an enhanced flux of biogenic silica (BSi). The geochemical structure of MIS 11 shows similar characteristics as seen in MIS 11 records from Lake Baikal (southeastern Siberia) and Antarctic ice cores, thereby arguing for the influence of global forcings on these records. High sediment content of TiO2, Fe2O3, MgO, Al2O3, LOI, Ni, Cr, and Zr typifies glacial stages, with the most marked increases during MIS 7.4 and 6.6. Reducing conditions during glacial times are indicated by peaks in the Fe2O3 content and coinciding low Fe2O3/MnO ratios. This conclusion also is supported by P2O5 and MnO enrichment, indicating an increased abundance of authigenic, fine-grained vivianite. Elemental ratios (CIA, CIW, PIA, and Rb/Sr) indicate that glacial sediments are depleted in mobile elements, like Na, Ca, K and Sr. This depletion was caused by changes in the sedimentation regime and thus reflects environmental changes.