Current Research in Biotechnology (Jan 2023)

OsttaSBEIII expression alters granule size and increases starch levels and its degradability in Arabidopsis

  • Nicolas Hedin,
  • Julieta Barchiesi,
  • Maria I. Zanor,
  • Hugo R. Permingeat,
  • Diego F. Gomez-Casati,
  • Maria V. Busi

Journal volume & issue
Vol. 5
p. 100131

Abstract

Read online

The physicochemical properties of starches from different botanical origin, such as viscosity, gelatinization temperature, solubility and degradability depend on the amylose/amylopectin ratio and the length and frequency of the α-1,6-glycosidic bonds in amylopectin. These branches depend on the action of the starch branching enzymes (SBEs), which are highly structurally conserved in plants. We recently identified a novel gene from Ostreococcus tauri (OsttaSBEIII) which codes for a protein showing starch branching activity (OsttaSBEIII) and with a different structure than other known SBEs from plants, containing two in-tandem carbohydrate binding modules (CBM41-CBM48) at its N-terminus. OsttaSBEIII overexpression in A. thaliana plants resulted in a higher starch content and smaller granules with an increased degradability. OEOsttaSBE lines showed also an increase in the expression and activity of starch degradative enzymes and a higher content of glucose and inorganic phosphate, which suggests a remodeling of the granule structure in response to the expression of OsttaSBEIII. These results allow us to propose the use of OsttaSBEIII as a new strategy to obtain starches with greater degradability that would be useful for different biotechnological applications.

Keywords