Nanomaterials (May 2022)

Influence of Temperature Parameters on Morphological Characteristics of Plasma Deposited Zinc Oxide Nanoparticles

  • Tatyana Sergeevna Sazanova,
  • Leonid Alexandrovich Mochalov,
  • Alexander Alexandrovich Logunov,
  • Mikhail Alexandrovich Kudryashov,
  • Diana Georgievna Fukina,
  • Maksim Anatolevich Vshivtsev,
  • Igor Olegovich Prokhorov,
  • Pavel Andreevich Yunin,
  • Kirill Alexandrovich Smorodin,
  • Artem Anatolevich Atlaskin,
  • Andrey Vladimirovich Vorotyntsev

DOI
https://doi.org/10.3390/nano12111838
Journal volume & issue
Vol. 12, no. 11
p. 1838

Abstract

Read online

Zinc oxide nanoparticles were obtained by plasma-enhanced chemical vapor deposition (PECVD) under optical emission spectrometry control from elemental high-purity zinc in a zinc–oxygen–hydrogen plasma-forming gas mixture with varying deposition parameters: a zinc source temperature, and a reactor temperature in a deposition zone. The size and morphological parameters of the zinc oxide nanopowders, structural properties, and homogeneity were studied. The study was carried out with use of methods such as scanning electron microscopy, X-ray structural analysis, and Raman spectroscopy, as well as statistical methods for processing and analyzing experimental data. It was established that to obtain zinc oxide nanoparticles with a given size and morphological characteristics using PECVD, it is necessary (1) to increase the zinc source temperature to synthesize more elongated structures in one direction (and vice versa), and (2) to decrease the reactor temperature in the deposition zone to reduce the transverse size of the deposited structures (and vice versa), taking into account that at relatively low temperatures instead of powder structures, films can form.

Keywords