Metals (Apr 2020)

Thermodynamic Analysis of the Formation of FCC and BCC Solid Solutions of Ti-Based Ternary Alloys by Mechanical Alloying

  • Claudio Aguilar,
  • Carola Martinez,
  • Karem Tello,
  • Sergio Palma,
  • Adeline Delonca,
  • Francisca San Martín,
  • Ismeli Alfonso

DOI
https://doi.org/10.3390/met10040510
Journal volume & issue
Vol. 10, no. 4
p. 510

Abstract

Read online

A thermodynamic analysis of the synthesis of face-centred cubic (fcc) and body-centred cubic (bcc) solid solutions of Ti-based alloys produced by mechanical alloying was performed. Four Ti-based alloys were analysed: (i) Ti-13Ta-3Sn (at.%), (ii) Ti-30Nb-13Ta (at.%), (iii) Ti-20Nb-30Ta (wt. %) and (iv) Ti-33Nb-4Mn (at.%). The milled powders were characterized by X-ray diffraction, and the crystallite size and microstrain were determined using the Rietveld and Williamson–Hall methods. The Gibbs free energy of mixing for the formation of a solid solution of the three ternary systems (Ti-Ta-Sn, Ti-Nb-Ta and Ti-Nb-Mn) was calculated using an extended Miedema’s model, applying the Materials Analysis Applying Thermodynamics (MAAT) software. The values of the activity of each component were determined by MAAT. It was found that increasing the density of crystalline defects, such as dislocations and crystallite boundaries, changed the solubility limit in these ternary systems. Therefore, at longer milling times, the Gibbs free energy increases, so there is a driving force to form solid solutions from elemental powders. Finally, there is agreement between experimental and thermodynamic data confirming the formation of solid solutions.

Keywords