Thermodynamic Analysis of the Formation of FCC and BCC Solid Solutions of Ti-Based Ternary Alloys by Mechanical Alloying
Claudio Aguilar,
Carola Martinez,
Karem Tello,
Sergio Palma,
Adeline Delonca,
Francisca San Martín,
Ismeli Alfonso
Affiliations
Claudio Aguilar
Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390302, Chile
Carola Martinez
Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390302, Chile
Karem Tello
Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390302, Chile
Sergio Palma
Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390302, Chile
Adeline Delonca
Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390302, Chile
Francisca San Martín
Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390302, Chile
Ismeli Alfonso
Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Campus Morelia UNAM. Antigua carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, CP. 58190 Morelia, Michoacán, Mexico
A thermodynamic analysis of the synthesis of face-centred cubic (fcc) and body-centred cubic (bcc) solid solutions of Ti-based alloys produced by mechanical alloying was performed. Four Ti-based alloys were analysed: (i) Ti-13Ta-3Sn (at.%), (ii) Ti-30Nb-13Ta (at.%), (iii) Ti-20Nb-30Ta (wt. %) and (iv) Ti-33Nb-4Mn (at.%). The milled powders were characterized by X-ray diffraction, and the crystallite size and microstrain were determined using the Rietveld and Williamson–Hall methods. The Gibbs free energy of mixing for the formation of a solid solution of the three ternary systems (Ti-Ta-Sn, Ti-Nb-Ta and Ti-Nb-Mn) was calculated using an extended Miedema’s model, applying the Materials Analysis Applying Thermodynamics (MAAT) software. The values of the activity of each component were determined by MAAT. It was found that increasing the density of crystalline defects, such as dislocations and crystallite boundaries, changed the solubility limit in these ternary systems. Therefore, at longer milling times, the Gibbs free energy increases, so there is a driving force to form solid solutions from elemental powders. Finally, there is agreement between experimental and thermodynamic data confirming the formation of solid solutions.