PLoS Genetics (Jul 2017)

Reduced dosage of the chromosome axis factor Red1 selectively disrupts the meiotic recombination checkpoint in Saccharomyces cerevisiae.

  • Tovah E Markowitz,
  • Daniel Suarez,
  • Hannah G Blitzblau,
  • Neem J Patel,
  • Andrew L Markhard,
  • Amy J MacQueen,
  • Andreas Hochwagen

DOI
https://doi.org/10.1371/journal.pgen.1006928
Journal volume & issue
Vol. 13, no. 7
p. e1006928

Abstract

Read online

Meiotic chromosomes assemble characteristic "axial element" structures that are essential for fertility and provide the chromosomal context for meiotic recombination, synapsis and checkpoint signaling. Whether these meiotic processes are equally dependent on axial element integrity has remained unclear. Here, we investigated this question in S. cerevisiae using the putative condensin allele ycs4S. We show that the severe axial element assembly defects of this allele are explained by a linked mutation in the promoter of the major axial element gene RED1 that reduces Red1 protein levels to 20-25% of wild type. Intriguingly, the Red1 levels of ycs4S mutants support meiotic processes linked to axis integrity, including DNA double-strand break formation and deposition of the synapsis protein Zip1, at levels that permit 70% gamete survival. By contrast, the ability to elicit a meiotic checkpoint arrest is completely eliminated. This selective loss of checkpoint function is supported by a RED1 dosage series and is associated with the loss of most of the cytologically detectable Red1 from the axial element. Our results indicate separable roles for Red1 in building the structural axis of meiotic chromosomes and mounting a sustained recombination checkpoint response.