Science and Technology of Advanced Materials (Dec 2021)

High-performance flexible transparent micro-supercapacitors from nanocomposite electrodes encapsulated with solution processed MoS2 nanosheets

  • Vivekanandan Raman,
  • Dongjoon Rhee,
  • Aravindha Raja Selvaraj,
  • Jihyun Kim,
  • Kandasamy Prabakar,
  • Joohoon Kang,
  • Han-Ki Kim

DOI
https://doi.org/10.1080/14686996.2021.1978274
Journal volume & issue
Vol. 22, no. 1
pp. 875 – 884

Abstract

Read online

Two-dimensional molybdenum disulfide (MoS2) nanosheets have emerged as a promising material for transparent, flexible micro-supercapacitors, but their use in electrodes is hindered by their poor electrical conductivity and cycling stability because of restacking. In this paper, we report a novel electrode architecture to exploit electrochemical activity of MoS2 nanosheets. Electrochemically exfoliated MoS2 dispersion was spin coated on mesh-like silver networks encapsulated with a flexible conducting film exhibiting a pseudocapacitive behavior. MoS2 nanosheets were electrochemically active over the whole electrode surface and the conductive layer provided a pathway to transport electrons between the MoS2 and the electrolyte. As the result, the composite electrode achieved a large areal capacitance (89.44 mF cm−2 at 6 mA cm−2) and high energy and power densities (12.42 µWh cm−2 and P = 6043 µW cm−2 at 6 mA cm−2) in a symmetric cell configuration with 3 M KOH solution while exhibiting a high optical transmittance of ~80%. Because the system was stable against mechanical bending and charge/discharge cycles, a flexible micro-supercapacitor that can power electronics at different bending states was realized.

Keywords