Mathematics (Sep 2019)
Tuning Multi-Objective Evolutionary Algorithms on Different Sized Problem Sets
Abstract
Multi-Objective Evolutionary Algorithms (MOEAs) have been applied successfully for solving real-world multi-objective problems. Their success can depend highly on the configuration of their control parameters. Different tuning methods have been proposed in order to solve this problem. Tuning can be performed on a set of problem instances in order to obtain robust control parameters. However, for real-world problems, the set of problem instances at our disposal usually are not very plentiful. This raises the question: What is a sufficient number of problems used in the tuning process to obtain robust enough parameters? To answer this question, a novel method called MOCRS-Tuning was applied on different sized problem sets for the real-world integration and test order problem. The configurations obtained by the tuning process were compared on all the used problem instances. The results show that tuning greatly improves the algorithms’ performance and that a bigger subset used for tuning does not guarantee better results. This indicates that it is possible to obtain robust control parameters with a small subset of problem instances, which also substantially reduces the time required for tuning.
Keywords