BMC Complementary and Alternative Medicine (May 2017)

(−)-Epicatechin 3-O-β-d-allopyranoside prevent ovariectomy-induced bone loss in mice by suppressing RANKL-induced NF-κB and NFATc-1 signaling pathways

  • Hung-Bo Hsiao,
  • Jin-Bin Wu,
  • Wen-Chuan Lin

DOI
https://doi.org/10.1186/s12906-017-1737-9
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Davallia formosana Hayata is a herb that has been used in Chinese medicine to treat bone diseases, including arthritis, bone fractures and osteoporosis. The rhizome of D. formosana H. has been found to be rich in (−)-Epicatechin 3-O-β-d-allopyranoside (ECAP), which is considered to be the active component of the plant in terms of its antiosteoporotic effect. This study investigated the molecular mechanism of the antiosteoporotic property of ECAP isolated from the roots of D. formosana H. using both in vitro and in vivo models. Methods We studied the effects of ECAP on the signaling pathways of the receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclastogenesis and ovariectomy-induced osteoporosis. In the in vitro study, the inhibitory action of ECAP on RANKL-induced osteoclastogenesis and the expression of osteoclast-related marker genes were investigated, and in the in vivo study, the effects of ECAP on bone were evaluated using ovariectomized (OVX) mice orally-administered ECAP for 4 weeks. Results We demonstrated that ECAP dose-dependently inhibited RANKL- and nuclear factor of activated T-cells, and cytoplasmic 1 (NFATc-1)-induced osteoclastogenesis by RAW 264.7 cells, and reduced the extent of bone resorption. Furthermore, μCT images and TRAP staining showed that oral administration of ECAP to OVX mice prevented bone loss. ECAP administration also exerted recovery effects on serum C-terminal telopeptide of type I collagen and osteocalcin levels in OVX mice. In addition, we also found that MMP-9 expression was decreased in vivo and in vitro. Conclusions Overall, our findings suggested that ECAP suppresses RANKL-induced osteoclastogenesis through NF-κB and NFATc-1 signaling pathways, and has the potential for use in osteoporosis treatment.

Keywords