Coupled Effect of Nutritional Food Molecules and <i>Lactobacillus reuteri</i> Surface Protein Interaction on the Bacterial Gastrointestinal Tolerance
Ao Zhang,
Mingjuan Ou,
Peng Wu,
Kaige Zheng,
Haiqian Zhang,
Yixing Yu,
Yuxing Guo,
Tao Zhang,
Daodong Pan,
Zhen Wu
Affiliations
Ao Zhang
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
Mingjuan Ou
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
Peng Wu
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
Kaige Zheng
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
Haiqian Zhang
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
Yixing Yu
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
Yuxing Guo
School of Food Science & Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
Tao Zhang
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
Daodong Pan
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
Zhen Wu
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
Lactobacillus reuteri, which is present in fermented foods, can produce LPxTG motif proteins (LMPs) to help the strain resist gastrointestinal fluid environmental stress and enhance the adherence and colonizing properties. Intestinal nutrient small molecules can interact with LMPs and cooperate with Lactobacillus to exert probiotic effects in the host intestine. However, the mechanism of their correlation with gastrointestinal tolerance needs to be further studied. In this study, different kinds of nutritional food molecules, such as intestinal phenols, sugars, and acids, were screened and the interaction between the LPxTG proteins and small molecules was explored via the molecular docking approach. The docking results showed that phenols and oligosaccharides were more likely to bind to the LPxTG protein (B3XKV5), with the benzene ring, phenolic hydroxyl group, and glycosidic bond in the small molecule more easily binding to the active site of B3XKV5. Furthermore, the gastrointestinal tolerance was enhanced under the rutin, myricetin, quercetin phenols, and stachyose-treated L. reuteri strain groups, especially the phenol group, which revealed the relationship between the molecular interaction of the strain with the small molecules and strain tolerance mechanism. All the findings illustrated the gastrointestinal tolerance escape effect of the Lactobacillus strain under enriched intestinal nutrient small molecular conditions, and they also provide insight regarding the small molecules for the Lactobacillus strain under abnormal growth environments.