Nomogram model for predicting cause-specific mortality in patients with stage I small-cell lung cancer: a competing risk analysis
Jianjie Li,
Qiwen Zheng,
Xinghui Zhao,
Jun Zhao,
Tongtong An,
Meina Wu,
Yuyan Wang,
Minglei Zhuo,
Jia Zhong,
Xue Yang,
Bo Jia,
Hanxiao Chen,
Zhi Dong,
Jingjing Wang,
Yujia Chi,
Xiaoyu Zhai,
Ziping Wang
Affiliations
Jianjie Li
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Qiwen Zheng
Department of Epidemiology and Biostatistics, School of Public Health, Peking University
Xinghui Zhao
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Jun Zhao
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Tongtong An
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Meina Wu
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Yuyan Wang
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Minglei Zhuo
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Jia Zhong
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Xue Yang
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Bo Jia
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Hanxiao Chen
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Zhi Dong
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Jingjing Wang
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Yujia Chi
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Xiaoyu Zhai
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Ziping Wang
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute
Abstract Background The five-year cumulative incidence rate in patients diagnosed with stage I small-cell lung cancer (SCLC) who were instructed to undergo surgery was from 40 to 60%.The death competition influence the accuracy of the classical survival analyses. The aim of the study is to investigate the mortality of stage I small-cell lung cancer (SCLC) patients in the presence of competing risks according to a proportional hazards model, and to establish a competing risk nomogram to predict probabilities of both cause-specific death and death resulting from other causes. Methods The study subjects were patients diagnosed with stage I SCLC according to ICD-O-3. First, the cumulative incidence functions (CIFs) of cause-specific death, as well as of death resulting from other causes, were calculated. Then, a proportional hazards model for the sub-distribution of competing risks and a monogram were constructed to evaluate the probability of mortality in stage I SCLC patients. Results 1811 patients were included in this study. The five-year probabilities of death due to specific causes and other causes were 61.5 and 13.6%, respectively. Tumor size, extent of tumor, surgery, and radiotherapy were identified as the predictors of death resulting from specific causes in stage I SCLC. The results showed that surgery could effectively reduce the cancer-specific death, and the one-year cumulative incidence dropped from 34.5 to 11.2%. Like surgery, chemotherapy and radiotherapy improved the one-year survival rate. Conclusions We constructed a predictive model for stage I SCLC using the data from the SEER database. The proportional sub-distribution models of competing risks revealed the predictors of death resulting from both specific causes and other causes. The competing risk nomogram that we built to predict the prognosis showed good reliability and could provide beneficial and individualized predictive information for stage I SCLC patients.