Microorganisms (Oct 2021)
Characterization and Antimicrobial Resistance of Environmental and Clinical <i>Aeromonas</i> Species Isolated from Fresh Water Ornamental Fish and Associated Farming Environment in Sri Lanka
Abstract
The aims of this study were to characterize and investigate antimicrobial susceptibility and presence of integrons in 161 Aeromonas spp. isolated from ornamental freshwater fish farming environment, apparently healthy and diseased fish. Phylogenetic analyses of the gyrB gene sequences identified Aeromonas veronii as the most abundant species (75.8%) followed by Aeromonashydrophila (9.3%), Aeromonas caviae (5%), Aeromonas jandaei (4.3%), Aeromonas dhakensis (3.7%), Aeromonas sobria (0.6%), Aeromonas media (0.6%), and Aeromonas popoffii (0.6%). Susceptibility to thirteen antimicrobials was determined and antimicrobial resistance frequencies were: amoxicillin (92.5%), enrofloxacin (67.1%), nalidixic acid (63.4%), erythromycin (26.1%), tetracycline (23.6%), imipenem (18%), trimethoprim-sulfamethoxazole (16.8%), and gentamicin (16.8%). Multi-drug resistance (MDR) was widespread among the isolates (51.6%, 83/161) with 51.6% (63/122) A. veronii isolates being MDR. In addition, 68.3% of isolates had multiple antibiotic resistance (MAR) indexes higher than 0.2, suggesting that they originated from a high-risk source of contamination where antimicrobials are often used. In all, 21.7% isolates carried class 1 integrons, with 97.1% having gene cassettes, while there were 12 isolates carrying class 2 integron gene cassettes. Our findings highlight that the aquatic environment and ornamental fish act as reservoirs of multidrug resistant Aeromonas spp. and underline the need for a judicious use of antimicrobials and timely surveillance of antimicrobial resistance (AMR) in aquaculture.
Keywords