Informatika (Mar 2021)
Data analysis in complex biomolecular systems
Abstract
The biomolecular technology progress is directly related to the development of effective methods and algorithms for processing a large amount of information obtained by modern high-throughput experimental equipment. The priority task is the development of promising computational tools for the analysis and interpretation of biophysical information using the methods of big data and computer models. An integrated approach to processing large datasets, which is based on the methods of data analysis and simulation modelling, is proposed. This approach allows to determine the parameters of biophysical and optical processes occurring in complex biomolecular systems. The idea of an integrated approach is to use simulation modelling of biophysical processes occurring in the object of study, comparing simulated and most relevant experimental data selected by dimension reduction methods, determining the characteristics of the investigated processes using data analysis algorithms. The application of the developed approach to the study of bimolecular systems in fluorescence spectroscopy experiments is considered. The effectiveness of the algorithms of the approach was verified by analyzing of simulated and experimental data representing the systems of molecules and proteins. The use of complex analysis increases the efficiency of the study of biophysical systems during the analysis of big data.
Keywords