Atmospheric Chemistry and Physics (Jan 2015)

Aging of secondary organic aerosol generated from the ozonolysis of α-pinene: effects of ozone, light and temperature

  • C. Denjean,
  • P. Formenti,
  • B. Picquet-Varrault,
  • M. Camredon,
  • E. Pangui,
  • P. Zapf,
  • Y. Katrib,
  • C. Giorio,
  • A. Tapparo,
  • B. Temime-Roussel,
  • A. Monod,
  • B. Aumont,
  • J. F. Doussin

DOI
https://doi.org/10.5194/acp-15-883-2015
Journal volume & issue
Vol. 15, no. 2
pp. 883 – 897

Abstract

Read online

A series of experiments was conducted in the CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber to investigate the evolution of the physical and chemical properties of secondary organic aerosols (SOAs) during different forcings. The present experiments represent a first attempt to comprehensively investigate the influence of oxidative processing, photochemistry, and diurnal temperature cycling upon SOA properties. SOAs generated from the ozonolysis of α-pinene were exposed under dry conditions (f44 / f43 and O : C ratio of the particles bulk. No change in SOA size or chemical composition was observed during O3 and light exposure at constant temperature; in addition, GF and CRI of the SOA remained constant with forcing. On the contrary, illumination of SOAs in the absence of temperature control led to an increase in the real part of the CRI from 1.35 (±0.03) to 1.49 (±0.03), an increase of the GF from 1.04 (±0.02) to 1.14 (±0.02) and an increase of the f44 / f43 ratio from 1.73 (±0.03) to 2.23 (±0.03). The simulation of the experiments using the master chemical mechanism (MCM) and the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) shows that these changes resulted from the evaporation of semi-volatile and less oxidized SOA species induced by the relatively minor increases in temperature (~ 6 °C). These surprising results suggest that α-pinene–O3 SOA properties may be governed more by local temperature fluctuations than by oxidative processing and photochemistry.