Ecotoxicology and Environmental Safety (Jan 2024)

Alleviative effect of quercetin against reproductive toxicity induced by chronic exposure to the mixture of phthalates in male rats

  • Ling-Zi Xia,
  • Li-Lan Liu,
  • Jun-Zhe Yue,
  • Zhen-Yu Lu,
  • Jie Zheng,
  • Ming-Zhe Jiang,
  • Min Lin,
  • Jiaming Liu,
  • Hai-Tao Gao

Journal volume & issue
Vol. 270
p. 115920

Abstract

Read online

Phthalates (PEs) are widely used plasticizers in polymer products, and humans are increasingly exposed to them. This study was designed to investigate the alleviative effect of phytochemicals quercetin (Que) against male reproductive toxicity caused by the mixture of three commonly used PEs (MPEs), and further to explore the underlying mechanism. Forty-eight male SD rats were randomly and evenly divided into control group, Que group, MPEs group and MPEs+Que group (n = 12); The oral exposure doses of MPEs and Que were 450 mg/kg/d and 50 mg/kg/d, respectively. After 91 days of continuous intervention, compared with control group, the testes weight, epididymis weight, serum sex hormones, and anogenital distance were significantly decreased in MPEs group (P < 0.05); Testicular histopathological observation showed that all seminiferous tubules were atrophy, leydig cells were hyperplasia, spermatogenic cells growth were arrested in MPEs group. Ultrastructural observation of testicular germ cells showed that the edges of the nuclear membranes were indistinct, and the mitochondria were severely damaged with the cristae disrupted, decreased or even disappeared in MPEs group. Immunohistochemistry and Western blot analysis showed that testicular CYP11A1, CYP17A1 and 17β-HSD were up-regulated, while StAR, PIWIL1 and PIWIL2 were down-regulated in MPEs group (P < 0.05); However, the alterations of these parameters were restored in MPEs+Que group. The results indicated MPEs disturbed steroid hormone metabolism, and caused male reproductive injuries; whereas, Que could inhibit MPEs’ male reproductive toxicity, which might relate to the restored regulation of steroid hormone metabolism.

Keywords