PLoS ONE (Jan 2019)

Seasonal diet composition of Pyrenean chamois is mainly shaped by primary production waves.

  • Johan Espunyes,
  • Jordi Bartolomé,
  • Mathieu Garel,
  • Arturo Gálvez-Cerón,
  • Xavier Fernández Aguilar,
  • Andreu Colom-Cadena,
  • Juan Antonio Calleja,
  • Diana Gassó,
  • Laia Jarque,
  • Santiago Lavín,
  • Ignasi Marco,
  • Emmanuel Serrano

DOI
https://doi.org/10.1371/journal.pone.0210819
Journal volume & issue
Vol. 14, no. 1
p. e0210819

Abstract

Read online

In alpine habitats, the seasonally marked climatic conditions generate seasonal and spatial differences in forage availability for herbivores. Vegetation availability and quality during the growing season are known to drive life history traits of mountain ungulates. However, little effort has been made to understand the association between plant phenology and changes in the foraging strategies of these mountain dwellers. Furthermore, this link can be affected by the seasonal presence of livestock in the same meadows. The objective of this work was to study the seasonal changes in diet composition of Pyrenean chamois (Rupicapra p. pyrenaica) and its relationship to primary production trends in a Mediterranean alpine environment. Moreover, diet composition in two populations with contrasting livestock pressure was compared in order to study the effect of sheep flocks on the feeding behaviour of chamois. From 2009 to 2012, monthly diet composition was estimated by cuticle microhistological analysis of chamois faeces collected in the eastern Pyrenees. The primary production cycle was assessed by remote sensing, using the Normalized Difference Vegetation Index. Additionally, the diet of sheep sharing seasonally the subalpine and alpine meadows with chamois was analysed. Diet selection of chamois and sheep and their overlap was also assessed. Our results show an intra-annual variation in the diet composition of Pyrenean chamois and demonstrate a strong relationship between plant consumption dynamics and phenology in alpine areas. In addition, Calluna vulgaris, Cytisus spp. and Festuca spp., as well as forbs in the summer, are found to be key forage species for Pyrenean chamois. Furthermore, this study couldn't detect differences between both chamois populations despite the presence of sheep flocks in only one area. However, the detection of a shift in the diet of chamois in both areas after the arrival of high densities of multi-specific livestock suggest a general livestock effect. In conclusion, Pyrenean chamois are well adapted to the variations in the seasonal availability of plants in alpine habitats but could be disturbed by the seasonal presence of livestock. Due to the key plants in their diet, we suggest that population management programmes should focus on the preservation of mixed grasslands composed of patches of shrubs and herbs. The effects of climate change and shrub expansion should be studied as they may potentially affect chamois population dynamics through changes in habitat composition and temporal shifts in forage availability.