BMC Public Health (Mar 2022)
Exploring the mechanisms behind HIV drug resistance in sub-Saharan Africa: conceptual mapping of a complex adaptive system based on multi-disciplinary expert insights
Abstract
Abstract Background HIV drug resistance (HIVDR) continues to threaten the effectiveness of worldwide antiretroviral therapy (ART). Emergence and transmission of HIVDR are driven by several interconnected factors. Though much has been done to uncover factors influencing HIVDR, overall interconnectedness between these factors remains unclear and African policy makers encounter difficulties setting priorities combating HIVDR. By viewing HIVDR as a complex adaptive system, through the eyes of multi-disciplinary HIVDR experts, we aimed to make a first attempt to linking different influencing factors and gaining a deeper understanding of the complexity of the system. Methods We designed a detailed systems map of factors influencing HIVDR based on semi-structured interviews with 15 international HIVDR experts from or with experience in sub-Saharan Africa, from different disciplinary backgrounds and affiliated with different types of institutions. The resulting detailed system map was conceptualized into three main HIVDR feedback loops and further strengthened with literature evidence. Results Factors influencing HIVDR in sub-Saharan Africa and their interactions were sorted in five categories: biology, individual, social context, healthcare system and ‘overarching’. We identified three causal loops cross-cutting these layers, which relate to three interconnected subsystems of mechanisms influencing HIVDR. The ‘adherence motivation’ subsystem concerns the interplay of factors influencing people living with HIV to alternate between adherence and non-adherence. The ‘healthcare burden’ subsystem is a reinforcing loop leading to an increase in HIVDR at local population level. The ‘ART overreliance’ subsystem is a balancing feedback loop leading to complacency among program managers when there is overreliance on ART with a perceived low risk to drug resistance. The three subsystems are interconnected at different levels. Conclusions Interconnectedness of the three subsystems underlines the need to act on the entire system of factors surrounding HIVDR in sub-Saharan Africa in order to target interventions and to prevent unwanted effects on other parts of the system. The three theories that emerged while studying HIVDR as a complex adaptive system form a starting point for further qualitative and quantitative investigation.