Advances in Civil Engineering (Jan 2020)
Study on the Stage Failure Mechanism and Stability Control of Surrounding Rock of Repeated Mining Roadway
Abstract
China is one of the leading countries in the mining and utilization of coal resources, and the problems of coal-mining technology and safety have been concerned by the world, while the serious deformation and destruction of surrounding rock and the difficulty of support have brought inconvenience to the mining of coal resources due to repeated mining. This paper takes the actual engineering 22205 mining roadway in Buertai mine as the research background, through the combination of numerical simulation and field measurement. In this paper, the stress environment, plastic zone, and surrounding rock deformation in the advancing process of coal-mining face are studied, and the stress evolution law of surrounding rock in repeated mining roadway is obtained. It is clarified that the surrounding rock deformation is the failure mechanism under the combined action of principal stress difference and stress direction deflection. As a result, the surrounding rock of the roadway is asymmetrically deformed and destroyed, and the corresponding surrounding rock control scheme is put forward. The results show that the influence of repeated mining on roadway stress environment can be divided into four stages with the mining process: the stability stage of mining influence, the expansion stage of primary mining, the stable stage after primary mining, and the expansion stage of second mining. At the same time, the shape changes of the plastic zone and the displacement monitoring results of the monitoring are analyzed, and the results are obtained; the stage of stress change is suitable, and combined with the failure characteristics of surrounding rock in each stage, it is put forward that reinforcement measures should be taken in the stable stage after mining; the specific reinforcement scheme is determined according to the expansion form of plastic zone and field measurement. The on-site monitoring shows that there is no roof fall accident during the use of the roadway, which ensures the safety in production.