Tellus: Series A, Dynamic Meteorology and Oceanography (Mar 2015)
Assimilating high-resolution winds from a Doppler lidar using an ensemble Kalman filter with lateral boundary adjustment
Abstract
Monitoring severe weather, including wind shear and clear air turbulence, is important for aviation safety. To provide accurate information for nowcasts and very short-range forecasts up to an hour, a rapid-update prediction system has been developed, with a particular focus on lateral boundary adjustment (LBA) using the local ensemble transform Kalman filter (LETKF). Due to the small forecast domain, limited-area forecasts are dominated by the lateral boundary conditions from coarse-resolution global forecasts. To effectively extend the forecast lead time for the small domain, a new LBA scheme using the LETKF has been developed and assessed with three sea-breeze front cases. Observing system simulation experiments for high-resolution winds from a simulated Doppler lidar were performed with the Japan Meteorological Agency Nonhydrostatic Mesoscale Model at a horizontal resolution of 400 m and 15-minute update cycle. The results indicate that the LBA improved the forecast significantly. In particular, the 1-hour wind-speed forecast with the LBA is as accurate as the 15-minute forecast without the LBA. The assimilation of Doppler lidar high-resolution wind data with the LBA is a promising approach for very short-range forecasts up to an hour with a small domain, such as for aviation weather.
Keywords