Agricultural Water Management (Feb 2024)
Root-zone aeration improves fruit yield and quality of tomato by enhancement of leaf photosynthetic performance
Abstract
Heavy irrigation and soil compaction cause hypoxic stress in plant roots, which limits crop growth. This issue can be solved by root-zone aeration, but the photophysiological responses of crop plants to the dissolved oxygen (DO) concentration in irrigation water remain unclear. Here, a greenhouse plot experiment was conducted to investigate the changes in leaf photosynthesis and plant growth of tomato (Solanum lycopersicum L. cv. ‘Omanda 3′) under aerated irrigation with various DO concentrations. Plants were treated with three different levels of aeration: 5 mg L–1 DO (conventional subsurface irrigation as a non-aeration control), 15 mg L–1 DO (low aeration treatment), and 30 mg L–1 DO (high aeration treatment). Compared with the control, the aeration treatments promoted electron transport from the primary to secondary plastoquinone acceptors (QA to QB) of photosystem II (PSII) and increased leaf net photosynthetic rate in plants at the seedling, fruit expansion, and maturation stages. The opposite effects of aeration treatments were observed at the flowering and fruit-setting stage. The enhancement of leaf photosynthetic performance contributed to improved plant growth, fruit yield, and quality of tomato as a result of increased oxygen supply in the root zone. The aeration treatments additionally facilitated the biosynthesis and transport of photosynthetic carbon assimilates in plant tissues, as evidenced by increased starch and sucrose contents in the leaves and sucrose content in the roots. However, under the high aeration level, excessive transport of sucrose from leaves to roots hindered further improvements in tomato yield and biomass at the maturation stage. Based on plant photophysiological and yield performance, aerated irrigation with a low concentration of DO (15 mg L–1) is recommended for greenhouse tomato crops during the seedling, fruit expansion, and maturation stages, and there is no need of root-zone aeration at the flowering and fruit-setting stage.