Cell Journal (Jan 2015)
Isolation and Enrichment of Mouse Female Germ Line Stem Cells
Abstract
Objective: The existence of female germ-line stem cells (FGSCs) has been the subject of a wide range of recent studies. Successful isolation and culture of FGSCs could facilitate studies on regenerative medicine and infertility treatments in the near future. Our aim in the present study was evaluation of the most commonly used techniques in enrichment of FGSCs and in establishment of the best procedure. Materials and Methods: In this experimental study, after digesting neonate ovary from C57Bl/6 mice, we performed 2 different isolation experiments: magnetic activated cell sorting (MACS) and pre-plating. MACS was applied using two different antibodies against mouse vasa homolog (MVH) and stage-specific embryonic antigen-1 (SSEA1) markers. After the cells were passaged and proliferated in vitro, colony-forming cells were characterized using reverse transcription-polymerase chain reaction (RT-PCR) (for analysis of expression of Oct4, Nanog, C-kit, Fragilis, Mvh, Dazl, Scp3 and Zp3), alkaline phosphatase (AP) activity test and immunocytochemistry. Results: Data showed that colonies can be seen more frequently in pre-plating technique than that in MACS. Using the SSEA1 antibody with MACS, 1.98 ± 0.49% (Mean ± SDV) positive cells were yield as compared to the total cells sorted. The colonies formed after pre-plating expressed pluripotency and germ stem cell markers (Oct4, Nanog, C-kit, Fragilis, Mvh and Dazl) whereas did not express Zp3 and Scp3 at the mRNA level. Immunocytochemistry in these colonies further confirmed the presence of OCT4 and MVH proteins, and AP activity measured by AP-kit showed positive reaction. Conclusion: We established a simple and an efficient pre-plating technique to culture and to enrich FGSCs from neonatal mouse ovaries.